Apple keeps pushing AI industry forward with more open-source models

Posted:
in General Discussion

Apple's Apple Intelligence research team have released two new small but high-performing language models used to train AI generators.

An iPhone displaying a colorful, glowing symbol rests on a white computer keyboard.
Apple's ability to create incredibly compact yet powerful AI models is unequaled in the industry.



The Machine Learning team at Apple are taking part in an open-source DataComp for Language Models project alongside others in the industry. The two models Apple has recently produced have been seen to match or beat other leading training models, such as Llama 3 and Gemma.

Language models like these are used to train AI engines, like ChatGPT, by providing a standard framework. This includes an architecture, parameters, and filtering of datasets to provide higher-quality data for the AI engines to draw from.

I am really excited to introduce DataComp for Language Models (DCLM), our new testbed for controlled dataset experiments aimed at improving language models. 1/x pic.twitter.com/uNe5mUJJxb

-- Vaishaal Shankar (@Vaishaal)



Apple's submission to the project includes two models: a larger one with seven billion parameters, and a smaller one with 1.4 billion parameters. Apple's team said the larger model has outperformed the previous top model, MAP-Neo, by 6.6 percent in benchmarks.

More remarkably, the Apple team's DataComp-LM model uses 40 percent less computing power to accomplish those benchmarks. It was the best-performing model among those with open datasets, and competitive against those with private datasets.

Apple has made its models fully open -- the dataset, weight models, and training code are all available for other researchers to work with. Both the larger and smaller models scored well enough in the Massive Multi-task Language Understanding benchmarks (MMLU) to be competitive against commercial models.

A table comparing AI models on parameters, tokens, open datasets, and performance across three metrics: CORE, MMLU, and EXTENDED. Models include Llama2, DeepSeek, QWEN-2, Falcon, and others.
Benchmarks for Apple's larger dataset prove competitive against other models.



In debuting both Apple Intelligence and Private Cloud Compute at its WWDC conference in June, the company silenced critics who had claimed that Apple was behind the industry on artificial intelligence applications in its devices. Research papers from the Machine Learning team published before and after that event proved that the company is in fact an AI industry leader.

These models the Apple team has released are not intended for use in any future Apple products. They are community research projects to show improved effectiveness in curating small or large datasets used to train AI models.

Apple's Machine Learning team have previously shared research to the larger AI community. The datasets, research notes, and other assets are all to be found at HuggingFace.co, a platform dedicated to expanding the AI community.



Read on AppleInsider

Comments

  • Reply 1 of 13
    Google, Meta, Microsoft, Mistral and tons of other companies, both American and Chinese, are making open models and all of those are better than Apple's models, yet this site is saying that the famously proprietary supporting company is doing anything that would let them steer a field where they are the worst at. 

    Meanwhile, Apple's LLM can't even say who Obama is. 
    https://www.reddit.com/r/singularity/comments/1ck55ag/apples_open_elm_model_is_fast_but_it_isnt_very/?rdt=32852
    edited July 21 nubusctt_zhwilliamlondon
  • Reply 2 of 13
    22july201322july2013 Posts: 3,683member
    Max_truth said:
    Meanwhile, Apple's LLM can't even say who Obama is. 
    Is Apple's model designed to be small enough to run natively on an iPhone? Are all the other models you mentioned small enough to run on an iPhone? (It's a sincere question; I don't know the answer. It sounds like you are comparing Apples to Oranges.)
    ssfe11byronlwatto_cobra
  • Reply 3 of 13
    chasmchasm Posts: 3,493member
    Is Apple's model designed to be small enough to run natively on an iPhone? Are all the other models you mentioned small enough to run on an iPhone? (It's a sincere question; I don't know the answer. It sounds like you are comparing Apples to Oranges.)
    Max_Troll isn't a good source of accurate information, so let me answer that one for you: Apple's models are designed to be as much on-device as possible, but of course the whole of human experience and knowledge isn't going to fit, so some tasks will be quickly handed to Apple's Private Cloud Compute online if needed.

    For queries that involve specialized knowledge (like medical or legal advice, as examples, or other specialty areas), Apple will offer to send your query privately to OpenAI for an answer, but that requires your permission each time its needed. OpenAI doesn't get to collect your data, or train itself on your queries.

    For more about how this all works, I'd suggest watching the "Apple Intelligence" video on Apple's YouTube channel rather than the entire keynote.

    All that said, this article is about LLM and dataset models Apple is offering the wider AI community, not the specific models it will use on any of its own products. Apple has figured out how to create models that are modest in size AND use less computing power than the offerings from other companies, so it is offering those compression techniques and computing algorithms to the wider community.
    edited July 21 shrave10Alex1Nssfe11williamlondonbaconstangwatto_cobra
  • Reply 4 of 13
    avon b7avon b7 Posts: 7,958member
    chasm said:
    Is Apple's model designed to be small enough to run natively on an iPhone? Are all the other models you mentioned small enough to run on an iPhone? (It's a sincere question; I don't know the answer. It sounds like you are comparing Apples to Oranges.)
    Max_Troll isn't a good source of accurate information, so let me answer that one for you: Apple's models are designed to be as much on-device as possible, but of course the whole of human experience and knowledge isn't going to fit, so some tasks will be quickly handed to Apple's Private Cloud Compute online if needed.

    For queries that involve specialized knowledge (like medical or legal advice, as examples, or other specialty areas), Apple will offer to send your query privately to OpenAI for an answer, but that requires your permission each time its needed. OpenAI doesn't get to collect your data, or train itself on your queries.

    For more about how this all works, I'd suggest watching the "Apple Intelligence" video on Apple's YouTube channel rather than the entire keynote.

    All that said, this article is about LLM and dataset models Apple is offering the wider AI community, not the specific models it will use on any of its own products. Apple has figured out how to create models that are modest in size AND use less computing power than the offerings from other companies, so it is offering those compression techniques and computing algorithms to the wider community.
    That's a fair stab at an answer but, to be fair, claims in the article like this are off the mark:

    "Apple's ability to create incredibly compact yet powerful AI models is unequaled in the industry."

    There is a huge amount of research going into tiny LLM's and it seems new advances come out every week. Open source or not, and many are specifically tailored to specific areas or languages. Apple is unlikely to challenge native Chinese models for the Chinese language. And what about Arabic? 

    When I say 'huge' I mean it's very difficult to know exactly what might appear and keep track of it all. 

    Earbuds can make great use of NLP and everything related to voice biometrics, bone, conduction, audio processing etc. Little more is needed there. 

    Then this:

    "In debuting both Apple Intelligence and Private Cloud Compute at its WWDC conference in June, the company silenced critics who had claimed that Apple was behind the industry on artificial intelligence applications in its devices"

    The critics were simply pointing out reality. No equivalent shipping product from Apple was available. That remains the case today and will remain the case until something actually ships. Sometime late this year on a small range of models and well into next year for the rest of what was announced.

    To all intents and purposes 'Apple Intelligence' was more akin to a placeholder at WWDC to generate buzz and let people know what's coming.

    That's fine but we still have to wait to see what eventually comes out of the pipe and how it performs. 

    The more the better IMO but the 'industry' isn't slacking and is actually shipping. 
    muthuk_vanalingamctt_zh
  • Reply 5 of 13
    22july201322july2013 Posts: 3,683member
    chasm said:
    Is Apple's model designed to be small enough to run natively on an iPhone? Are all the other models you mentioned small enough to run on an iPhone? (It's a sincere question; I don't know the answer. It sounds like you are comparing Apples to Oranges.)
    Max_Troll isn't a good source of accurate information, so let me answer that one for you:
    Thanks. To a degree I was disagreeing with Max_truth, but sometimes when I write posts I try to write them so politely that the person reading it doesn't even realize I'm disagreeing. I'm trying to make them defend the weaknesses in their arguments without them even knowing that's what I'm asking them to do. I noticed that he didn't answer.
    Alex1Nwatto_cobra
  • Reply 6 of 13
    XedXed Posts: 2,804member
    Max_truth said:
    Google, Meta, Microsoft, Mistral and tons of other companies, both American and Chinese, are making open models and all of those are better than Apple's models, yet this site is saying that the famously proprietary supporting company is doing anything that would let them steer a field where they are the worst at. 

    Meanwhile, Apple's LLM can't even say who Obama is. 
    https://www.reddit.com/r/singularity/comments/1ck55ag/apples_open_elm_model_is_fast_but_it_isnt_very/?rdt=32852
    They are famously proprietary as they are open source. Getting yourself butt hurt because Apple doesn't license iOS the way Alphabet licenses Android does not a valid argument make.

    https://opensource.apple.com/projects/
    Alex1Nwilliamlondonwatto_cobra
  • Reply 7 of 13
    tmaytmay Posts: 6,453member
    avon b7 said:
    chasm said:
    Is Apple's model designed to be small enough to run natively on an iPhone? Are all the other models you mentioned small enough to run on an iPhone? (It's a sincere question; I don't know the answer. It sounds like you are comparing Apples to Oranges.)
    Max_Troll isn't a good source of accurate information, so let me answer that one for you: Apple's models are designed to be as much on-device as possible, but of course the whole of human experience and knowledge isn't going to fit, so some tasks will be quickly handed to Apple's Private Cloud Compute online if needed.

    For queries that involve specialized knowledge (like medical or legal advice, as examples, or other specialty areas), Apple will offer to send your query privately to OpenAI for an answer, but that requires your permission each time its needed. OpenAI doesn't get to collect your data, or train itself on your queries.

    For more about how this all works, I'd suggest watching the "Apple Intelligence" video on Apple's YouTube channel rather than the entire keynote.

    All that said, this article is about LLM and dataset models Apple is offering the wider AI community, not the specific models it will use on any of its own products. Apple has figured out how to create models that are modest in size AND use less computing power than the offerings from other companies, so it is offering those compression techniques and computing algorithms to the wider community.
    That's a fair stab at an answer but, to be fair, claims in the article like this are off the mark:

    "Apple's ability to create incredibly compact yet powerful AI models is unequaled in the industry."

    There is a huge amount of research going into tiny LLM's and it seems new advances come out every week. Open source or not, and many are specifically tailored to specific areas or languages. Apple is unlikely to challenge native Chinese models for the Chinese language. And what about Arabic? 

    When I say 'huge' I mean it's very difficult to know exactly what might appear and keep track of it all. 

    Earbuds can make great use of NLP and everything related to voice biometrics, bone, conduction, audio processing etc. Little more is needed there. 

    Then this:

    "In debuting both Apple Intelligence and Private Cloud Compute at its WWDC conference in June, the company silenced critics who had claimed that Apple was behind the industry on artificial intelligence applications in its devices"

    The critics were simply pointing out reality. No equivalent shipping product from Apple was available. That remains the case today and will remain the case until something actually ships. Sometime late this year on a small range of models and well into next year for the rest of what was announced.

    To all intents and purposes 'Apple Intelligence' was more akin to a placeholder at WWDC to generate buzz and let people know what's coming.

    That's fine but we still have to wait to see what eventually comes out of the pipe and how it performs. 

    The more the better IMO but the 'industry' isn't slacking and is actually shipping. 
    To date, AAPL has been rewarded nicely vs MSFT, so the market looks very favorably on Apple's AI implementation plans.

    Perhaps those "critics" were entirely wrong?

    MS CoPilot, as an example, has subsequently received quite a bit of "well earned" bad press by early users.

    Perhaps the rush to deliver has consequences?

    More to the point, critics totally ignored the fact that Apple has something on the order of 1.5 billion iPhone users, most of whom will upgrade in the future to more powerful AI hardware the does in essence allow increasingly larger models.

    Calling this AI "race" at the starting gate, as you are oft to do, isn't a determining factor in Apple ultimate AI success. 
    edited July 22 danoxbaconstangwatto_cobra
  • Reply 8 of 13
    danvmdanvm Posts: 1,464member
    tmay said:
    avon b7 said:
    chasm said:
    Is Apple's model designed to be small enough to run natively on an iPhone? Are all the other models you mentioned small enough to run on an iPhone? (It's a sincere question; I don't know the answer. It sounds like you are comparing Apples to Oranges.)
    Max_Troll isn't a good source of accurate information, so let me answer that one for you: Apple's models are designed to be as much on-device as possible, but of course the whole of human experience and knowledge isn't going to fit, so some tasks will be quickly handed to Apple's Private Cloud Compute online if needed.

    For queries that involve specialized knowledge (like medical or legal advice, as examples, or other specialty areas), Apple will offer to send your query privately to OpenAI for an answer, but that requires your permission each time its needed. OpenAI doesn't get to collect your data, or train itself on your queries.

    For more about how this all works, I'd suggest watching the "Apple Intelligence" video on Apple's YouTube channel rather than the entire keynote.

    All that said, this article is about LLM and dataset models Apple is offering the wider AI community, not the specific models it will use on any of its own products. Apple has figured out how to create models that are modest in size AND use less computing power than the offerings from other companies, so it is offering those compression techniques and computing algorithms to the wider community.
    That's a fair stab at an answer but, to be fair, claims in the article like this are off the mark:

    "Apple's ability to create incredibly compact yet powerful AI models is unequaled in the industry."

    There is a huge amount of research going into tiny LLM's and it seems new advances come out every week. Open source or not, and many are specifically tailored to specific areas or languages. Apple is unlikely to challenge native Chinese models for the Chinese language. And what about Arabic? 

    When I say 'huge' I mean it's very difficult to know exactly what might appear and keep track of it all. 

    Earbuds can make great use of NLP and everything related to voice biometrics, bone, conduction, audio processing etc. Little more is needed there. 

    Then this:

    "In debuting both Apple Intelligence and Private Cloud Compute at its WWDC conference in June, the company silenced critics who had claimed that Apple was behind the industry on artificial intelligence applications in its devices"

    The critics were simply pointing out reality. No equivalent shipping product from Apple was available. That remains the case today and will remain the case until something actually ships. Sometime late this year on a small range of models and well into next year for the rest of what was announced.

    To all intents and purposes 'Apple Intelligence' was more akin to a placeholder at WWDC to generate buzz and let people know what's coming.

    That's fine but we still have to wait to see what eventually comes out of the pipe and how it performs. 

    The more the better IMO but the 'industry' isn't slacking and is actually shipping. 
    To date, AAPL has been rewarded nicely vs MSFT, so the market looks very favorably on Apple's AI implementation plans.

    Perhaps those "critics" were entirely wrong?

    MS CoPilot, as an example, has subsequently received quite a bit of "well earned" bad press by early users.

    Perhaps the rush to deliver has consequences?

    More to the point, critics totally ignored the fact that Apple has something on the order of 1.5 billion iPhone users, most of whom will upgrade in the future to more powerful AI hardware the does in essence allow increasingly larger models.

    Calling this AI "race" at the starting gate, as you are oft to do, isn't a determining factor in Apple ultimate AI success. 
    I could be wrong, but the only bad press MS had was with Windows 11 Recall, and not with CoPilot.  On the contrary, I have seen CoPilot working.  And while it's not perfect, it's very good, especially with the MS Office integration. 
    muthuk_vanalingamctt_zh
  • Reply 9 of 13
    tmaytmay Posts: 6,453member
    danvm said:
    tmay said:
    avon b7 said:
    chasm said:
    Is Apple's model designed to be small enough to run natively on an iPhone? Are all the other models you mentioned small enough to run on an iPhone? (It's a sincere question; I don't know the answer. It sounds like you are comparing Apples to Oranges.)
    Max_Troll isn't a good source of accurate information, so let me answer that one for you: Apple's models are designed to be as much on-device as possible, but of course the whole of human experience and knowledge isn't going to fit, so some tasks will be quickly handed to Apple's Private Cloud Compute online if needed.

    For queries that involve specialized knowledge (like medical or legal advice, as examples, or other specialty areas), Apple will offer to send your query privately to OpenAI for an answer, but that requires your permission each time its needed. OpenAI doesn't get to collect your data, or train itself on your queries.

    For more about how this all works, I'd suggest watching the "Apple Intelligence" video on Apple's YouTube channel rather than the entire keynote.

    All that said, this article is about LLM and dataset models Apple is offering the wider AI community, not the specific models it will use on any of its own products. Apple has figured out how to create models that are modest in size AND use less computing power than the offerings from other companies, so it is offering those compression techniques and computing algorithms to the wider community.
    That's a fair stab at an answer but, to be fair, claims in the article like this are off the mark:

    "Apple's ability to create incredibly compact yet powerful AI models is unequaled in the industry."

    There is a huge amount of research going into tiny LLM's and it seems new advances come out every week. Open source or not, and many are specifically tailored to specific areas or languages. Apple is unlikely to challenge native Chinese models for the Chinese language. And what about Arabic? 

    When I say 'huge' I mean it's very difficult to know exactly what might appear and keep track of it all. 

    Earbuds can make great use of NLP and everything related to voice biometrics, bone, conduction, audio processing etc. Little more is needed there. 

    Then this:

    "In debuting both Apple Intelligence and Private Cloud Compute at its WWDC conference in June, the company silenced critics who had claimed that Apple was behind the industry on artificial intelligence applications in its devices"

    The critics were simply pointing out reality. No equivalent shipping product from Apple was available. That remains the case today and will remain the case until something actually ships. Sometime late this year on a small range of models and well into next year for the rest of what was announced.

    To all intents and purposes 'Apple Intelligence' was more akin to a placeholder at WWDC to generate buzz and let people know what's coming.

    That's fine but we still have to wait to see what eventually comes out of the pipe and how it performs. 

    The more the better IMO but the 'industry' isn't slacking and is actually shipping. 
    To date, AAPL has been rewarded nicely vs MSFT, so the market looks very favorably on Apple's AI implementation plans.

    Perhaps those "critics" were entirely wrong?

    MS CoPilot, as an example, has subsequently received quite a bit of "well earned" bad press by early users.

    Perhaps the rush to deliver has consequences?

    More to the point, critics totally ignored the fact that Apple has something on the order of 1.5 billion iPhone users, most of whom will upgrade in the future to more powerful AI hardware the does in essence allow increasingly larger models.

    Calling this AI "race" at the starting gate, as you are oft to do, isn't a determining factor in Apple ultimate AI success. 
    I could be wrong, but the only bad press MS had was with Windows 11 Recall, and not with CoPilot.  On the contrary, I have seen CoPilot working.  And while it's not perfect, it's very good, especially with the MS Office integration. 
    Your mileage varied...

    https://www.youtube.com/watch?v=dx-tMK7w5g8
    edited July 22 watto_cobra
  • Reply 10 of 13
    danvmdanvm Posts: 1,464member
    tmay said:
    danvm said:
    tmay said:
    avon b7 said:
    chasm said:
    Is Apple's model designed to be small enough to run natively on an iPhone? Are all the other models you mentioned small enough to run on an iPhone? (It's a sincere question; I don't know the answer. It sounds like you are comparing Apples to Oranges.)
    Max_Troll isn't a good source of accurate information, so let me answer that one for you: Apple's models are designed to be as much on-device as possible, but of course the whole of human experience and knowledge isn't going to fit, so some tasks will be quickly handed to Apple's Private Cloud Compute online if needed.

    For queries that involve specialized knowledge (like medical or legal advice, as examples, or other specialty areas), Apple will offer to send your query privately to OpenAI for an answer, but that requires your permission each time its needed. OpenAI doesn't get to collect your data, or train itself on your queries.

    For more about how this all works, I'd suggest watching the "Apple Intelligence" video on Apple's YouTube channel rather than the entire keynote.

    All that said, this article is about LLM and dataset models Apple is offering the wider AI community, not the specific models it will use on any of its own products. Apple has figured out how to create models that are modest in size AND use less computing power than the offerings from other companies, so it is offering those compression techniques and computing algorithms to the wider community.
    That's a fair stab at an answer but, to be fair, claims in the article like this are off the mark:

    "Apple's ability to create incredibly compact yet powerful AI models is unequaled in the industry."

    There is a huge amount of research going into tiny LLM's and it seems new advances come out every week. Open source or not, and many are specifically tailored to specific areas or languages. Apple is unlikely to challenge native Chinese models for the Chinese language. And what about Arabic? 

    When I say 'huge' I mean it's very difficult to know exactly what might appear and keep track of it all. 

    Earbuds can make great use of NLP and everything related to voice biometrics, bone, conduction, audio processing etc. Little more is needed there. 

    Then this:

    "In debuting both Apple Intelligence and Private Cloud Compute at its WWDC conference in June, the company silenced critics who had claimed that Apple was behind the industry on artificial intelligence applications in its devices"

    The critics were simply pointing out reality. No equivalent shipping product from Apple was available. That remains the case today and will remain the case until something actually ships. Sometime late this year on a small range of models and well into next year for the rest of what was announced.

    To all intents and purposes 'Apple Intelligence' was more akin to a placeholder at WWDC to generate buzz and let people know what's coming.

    That's fine but we still have to wait to see what eventually comes out of the pipe and how it performs. 

    The more the better IMO but the 'industry' isn't slacking and is actually shipping. 
    To date, AAPL has been rewarded nicely vs MSFT, so the market looks very favorably on Apple's AI implementation plans.

    Perhaps those "critics" were entirely wrong?

    MS CoPilot, as an example, has subsequently received quite a bit of "well earned" bad press by early users.

    Perhaps the rush to deliver has consequences?

    More to the point, critics totally ignored the fact that Apple has something on the order of 1.5 billion iPhone users, most of whom will upgrade in the future to more powerful AI hardware the does in essence allow increasingly larger models.

    Calling this AI "race" at the starting gate, as you are oft to do, isn't a determining factor in Apple ultimate AI success. 
    I could be wrong, but the only bad press MS had was with Windows 11 Recall, and not with CoPilot.  On the contrary, I have seen CoPilot working.  And while it's not perfect, it's very good, especially with the MS Office integration. 
    Your mileage varied...

    https://www.youtube.com/watch?v=dx-tMK7w5g8
    I don't see how the YT video about the risks and challenges companies have with AI business has any relation to my post about the good experience CoPliot provides.  
    edited July 22 muthuk_vanalingamctt_zh
  • Reply 11 of 13
    danoxdanox Posts: 3,233member
    danvm said:
    tmay said:
    avon b7 said:
    chasm said:
    Is Apple's model designed to be small enough to run natively on an iPhone? Are all the other models you mentioned small enough to run on an iPhone? (It's a sincere question; I don't know the answer. It sounds like you are comparing Apples to Oranges.)
    Max_Troll isn't a good source of accurate information, so let me answer that one for you: Apple's models are designed to be as much on-device as possible, but of course the whole of human experience and knowledge isn't going to fit, so some tasks will be quickly handed to Apple's Private Cloud Compute online if needed.

    For queries that involve specialized knowledge (like medical or legal advice, as examples, or other specialty areas), Apple will offer to send your query privately to OpenAI for an answer, but that requires your permission each time its needed. OpenAI doesn't get to collect your data, or train itself on your queries.

    For more about how this all works, I'd suggest watching the "Apple Intelligence" video on Apple's YouTube channel rather than the entire keynote.

    All that said, this article is about LLM and dataset models Apple is offering the wider AI community, not the specific models it will use on any of its own products. Apple has figured out how to create models that are modest in size AND use less computing power than the offerings from other companies, so it is offering those compression techniques and computing algorithms to the wider community.
    That's a fair stab at an answer but, to be fair, claims in the article like this are off the mark:

    "Apple's ability to create incredibly compact yet powerful AI models is unequaled in the industry."

    There is a huge amount of research going into tiny LLM's and it seems new advances come out every week. Open source or not, and many are specifically tailored to specific areas or languages. Apple is unlikely to challenge native Chinese models for the Chinese language. And what about Arabic? 

    When I say 'huge' I mean it's very difficult to know exactly what might appear and keep track of it all. 

    Earbuds can make great use of NLP and everything related to voice biometrics, bone, conduction, audio processing etc. Little more is needed there. 

    Then this:

    "In debuting both Apple Intelligence and Private Cloud Compute at its WWDC conference in June, the company silenced critics who had claimed that Apple was behind the industry on artificial intelligence applications in its devices"

    The critics were simply pointing out reality. No equivalent shipping product from Apple was available. That remains the case today and will remain the case until something actually ships. Sometime late this year on a small range of models and well into next year for the rest of what was announced.

    To all intents and purposes 'Apple Intelligence' was more akin to a placeholder at WWDC to generate buzz and let people know what's coming.

    That's fine but we still have to wait to see what eventually comes out of the pipe and how it performs. 

    The more the better IMO but the 'industry' isn't slacking and is actually shipping. 
    To date, AAPL has been rewarded nicely vs MSFT, so the market looks very favorably on Apple's AI implementation plans.

    Perhaps those "critics" were entirely wrong?

    MS CoPilot, as an example, has subsequently received quite a bit of "well earned" bad press by early users.

    Perhaps the rush to deliver has consequences?

    More to the point, critics totally ignored the fact that Apple has something on the order of 1.5 billion iPhone users, most of whom will upgrade in the future to more powerful AI hardware the does in essence allow increasingly larger models.

    Calling this AI "race" at the starting gate, as you are oft to do, isn't a determining factor in Apple ultimate AI success. 
    I could be wrong, but the only bad press MS had was with Windows 11 Recall, and not with CoPilot.  On the contrary, I have seen CoPilot working.  And while it's not perfect, it's very good, especially with the MS Office integration. 

    Recall, Qualcomm SOC fiasco, Windows emulation software on Arm, Crowdstrike and Ads.......

    https://www.pcmag.com/news/10-reasons-not-to-upgrade-to-windows-11 

    https://www.microsoft.com/en-us/windows/business/windows-11-pro-onward-itdm?ef_id=_k_36c7ed8943d21155b9758b17d2c20ca4_k_&OCID=AIDcmmdmw4ue0n_SEM__k_36c7ed8943d21155b9758b17d2c20ca4_k_&msclkid=36c7ed8943d21155b9758b17d2c20ca4#layout-container-uid3104  Bold claims the most secure Windows ever.

    Market inertia is what Microsoft leads in.
    tmaywatto_cobra
  • Reply 12 of 13
    danvmdanvm Posts: 1,464member
    danox said:
    danvm said:
    tmay said:
    avon b7 said:
    chasm said:
    Is Apple's model designed to be small enough to run natively on an iPhone? Are all the other models you mentioned small enough to run on an iPhone? (It's a sincere question; I don't know the answer. It sounds like you are comparing Apples to Oranges.)
    Max_Troll isn't a good source of accurate information, so let me answer that one for you: Apple's models are designed to be as much on-device as possible, but of course the whole of human experience and knowledge isn't going to fit, so some tasks will be quickly handed to Apple's Private Cloud Compute online if needed.

    For queries that involve specialized knowledge (like medical or legal advice, as examples, or other specialty areas), Apple will offer to send your query privately to OpenAI for an answer, but that requires your permission each time its needed. OpenAI doesn't get to collect your data, or train itself on your queries.

    For more about how this all works, I'd suggest watching the "Apple Intelligence" video on Apple's YouTube channel rather than the entire keynote.

    All that said, this article is about LLM and dataset models Apple is offering the wider AI community, not the specific models it will use on any of its own products. Apple has figured out how to create models that are modest in size AND use less computing power than the offerings from other companies, so it is offering those compression techniques and computing algorithms to the wider community.
    That's a fair stab at an answer but, to be fair, claims in the article like this are off the mark:

    "Apple's ability to create incredibly compact yet powerful AI models is unequaled in the industry."

    There is a huge amount of research going into tiny LLM's and it seems new advances come out every week. Open source or not, and many are specifically tailored to specific areas or languages. Apple is unlikely to challenge native Chinese models for the Chinese language. And what about Arabic? 

    When I say 'huge' I mean it's very difficult to know exactly what might appear and keep track of it all. 

    Earbuds can make great use of NLP and everything related to voice biometrics, bone, conduction, audio processing etc. Little more is needed there. 

    Then this:

    "In debuting both Apple Intelligence and Private Cloud Compute at its WWDC conference in June, the company silenced critics who had claimed that Apple was behind the industry on artificial intelligence applications in its devices"

    The critics were simply pointing out reality. No equivalent shipping product from Apple was available. That remains the case today and will remain the case until something actually ships. Sometime late this year on a small range of models and well into next year for the rest of what was announced.

    To all intents and purposes 'Apple Intelligence' was more akin to a placeholder at WWDC to generate buzz and let people know what's coming.

    That's fine but we still have to wait to see what eventually comes out of the pipe and how it performs. 

    The more the better IMO but the 'industry' isn't slacking and is actually shipping. 
    To date, AAPL has been rewarded nicely vs MSFT, so the market looks very favorably on Apple's AI implementation plans.

    Perhaps those "critics" were entirely wrong?

    MS CoPilot, as an example, has subsequently received quite a bit of "well earned" bad press by early users.

    Perhaps the rush to deliver has consequences?

    More to the point, critics totally ignored the fact that Apple has something on the order of 1.5 billion iPhone users, most of whom will upgrade in the future to more powerful AI hardware the does in essence allow increasingly larger models.

    Calling this AI "race" at the starting gate, as you are oft to do, isn't a determining factor in Apple ultimate AI success. 
    I could be wrong, but the only bad press MS had was with Windows 11 Recall, and not with CoPilot.  On the contrary, I have seen CoPilot working.  And while it's not perfect, it's very good, especially with the MS Office integration. 

    Recall, Qualcomm SOC fiasco, Windows emulation software on Arm, Crowdstrike and Ads.......

    https://www.pcmag.com/news/10-reasons-not-to-upgrade-to-windows-11 

    https://www.microsoft.com/en-us/windows/business/windows-11-pro-onward-itdm?ef_id=_k_36c7ed8943d21155b9758b17d2c20ca4_k_&OCID=AIDcmmdmw4ue0n_SEM__k_36c7ed8943d21155b9758b17d2c20ca4_k_&msclkid=36c7ed8943d21155b9758b17d2c20ca4#layout-container-uid3104  Bold claims the most secure Windows ever.

    Market inertia is what Microsoft leads in.
    Can you explain how does your comment relates to what I said about MS CoPilot?
    ctt_zhgatorguy
  • Reply 13 of 13
    avon b7avon b7 Posts: 7,958member
    tmay said:
    avon b7 said:
    chasm said:
    Is Apple's model designed to be small enough to run natively on an iPhone? Are all the other models you mentioned small enough to run on an iPhone? (It's a sincere question; I don't know the answer. It sounds like you are comparing Apples to Oranges.)
    Max_Troll isn't a good source of accurate information, so let me answer that one for you: Apple's models are designed to be as much on-device as possible, but of course the whole of human experience and knowledge isn't going to fit, so some tasks will be quickly handed to Apple's Private Cloud Compute online if needed.

    For queries that involve specialized knowledge (like medical or legal advice, as examples, or other specialty areas), Apple will offer to send your query privately to OpenAI for an answer, but that requires your permission each time its needed. OpenAI doesn't get to collect your data, or train itself on your queries.

    For more about how this all works, I'd suggest watching the "Apple Intelligence" video on Apple's YouTube channel rather than the entire keynote.

    All that said, this article is about LLM and dataset models Apple is offering the wider AI community, not the specific models it will use on any of its own products. Apple has figured out how to create models that are modest in size AND use less computing power than the offerings from other companies, so it is offering those compression techniques and computing algorithms to the wider community.
    That's a fair stab at an answer but, to be fair, claims in the article like this are off the mark:

    "Apple's ability to create incredibly compact yet powerful AI models is unequaled in the industry."

    There is a huge amount of research going into tiny LLM's and it seems new advances come out every week. Open source or not, and many are specifically tailored to specific areas or languages. Apple is unlikely to challenge native Chinese models for the Chinese language. And what about Arabic? 

    When I say 'huge' I mean it's very difficult to know exactly what might appear and keep track of it all. 

    Earbuds can make great use of NLP and everything related to voice biometrics, bone, conduction, audio processing etc. Little more is needed there. 

    Then this:

    "In debuting both Apple Intelligence and Private Cloud Compute at its WWDC conference in June, the company silenced critics who had claimed that Apple was behind the industry on artificial intelligence applications in its devices"

    The critics were simply pointing out reality. No equivalent shipping product from Apple was available. That remains the case today and will remain the case until something actually ships. Sometime late this year on a small range of models and well into next year for the rest of what was announced.

    To all intents and purposes 'Apple Intelligence' was more akin to a placeholder at WWDC to generate buzz and let people know what's coming.

    That's fine but we still have to wait to see what eventually comes out of the pipe and how it performs. 

    The more the better IMO but the 'industry' isn't slacking and is actually shipping. 
    To date, AAPL has been rewarded nicely vs MSFT, so the market looks very favorably on Apple's AI implementation plans.

    Perhaps those "critics" were entirely wrong?

    MS CoPilot, as an example, has subsequently received quite a bit of "well earned" bad press by early users.

    Perhaps the rush to deliver has consequences?

    More to the point, critics totally ignored the fact that Apple has something on the order of 1.5 billion iPhone users, most of whom will upgrade in the future to more powerful AI hardware the does in essence allow increasingly larger models.

    Calling this AI "race" at the starting gate, as you are oft to do, isn't a determining factor in Apple ultimate AI success. 
    The critics were entirely right, and still are. 

    The stock market impact is irrelevant to the point. 

    If Apple announced, but didn't ship, a non-invasive continuous glucose monitor, the stock price would soar. It wouldn't change the argument of the critics in slightest, even if the term 'critics' is entirely incorrect.

    Apple had little to nothing ready to go at WWDC while others had multiple versions of their solutions under their belts. 

    Previously, Apple had deliberately avoided the term which, in hindsight, wasn't the greatest of moves. 

    They couldn't go another year with only the ML line. Yeah, the stock can go both ways. 

    What has been announced will roll out very slowly and until it actually reaches users no one knows how it will perform. 

    That isn't being critical. It is being a realist.




Sign In or Register to comment.